ON THE SCHUR MULTIPLIER OF AUGMENTED ALGEBRAS

BY

JOSEPH ABARBANEL

School of Mathematics, Tel-Aviv University Ramat-Aviv 69978, Israel e-mail: yossia@math.tau.ac.il

ABSTRACT

Let k be a field, and A a finitely generated k-algebra, with augmentation. Suppose there is a presentation of A

$$0 \rightarrow I \rightarrow R \rightarrow A \rightarrow 0$$

where R is a finitely generated free k-algebra and I is non-zero. If A is infinite dimensional over k, Lewin proved that R/I^2 is not finitely presented. A stronger statement would be that the 'Schur multiplier' of R/I^2 is not finite dimensional. In the case that A is an augmented domain, we prove this stronger statement, and some related statements.

1. Introduction

If R is a free associative algebra, over a field, and I is a non-zero two-sided ideal of R, then Lewin proved [7] that I^2 is not finitely generated (as a 2-sided ideal!) when the algebra R/I is infinite dimensional. In other words, R/I^2 is not finitely presented in this case. On the other hand, it is easy to see that when R is finitely generated and R/I is finite dimensional, so is R/I^2 , and hence I^2 is finitely generated.

Similar behavior is seen in groups. If F is a finitely generated free group, and R is a normal subgroup then R' is normally finitely generated if, and only if, F/R is finite. But Baumslag, Strebel and Thomson proved [2] a stronger fact. Denoting the m-th member of the lower central series by γ_m , they proved that for

m > 1 the Schur multiplier of $F/\gamma_m R$, $H_2(F/\gamma_m R, \mathbb{Z})$, is not finitely generated (as an abelian group) if F/R is not finite.

In Lie algebras even more is true. It is shown in [1] that if L is a free Lie algebra over a field k, and I is any non-zero proper ideal then, for $n \geq 2$, $H_2(L/I^n, k)$ is not finite dimensional, and thus I^n is not finitely generated as an ideal. Here $I^n = I$ if n = 1, and $I^n = [I^{n-1}, I]$ if n > 1. This is true even when L/I is finite dimensional.

In the case of associative algebras, the question arises whether an analogous result can be attained. The analogue of the Schur multiplier of a group is the second Tor functor, i.e. if A is an augmented k-algebra, $\operatorname{Tor}_2^A(k,k)$ is considered as the Schur multiplier of A. This agrees with the definitions in group theory where A is the group ring $\mathbb{Z}G$, and for Lie algebras where A is the universal enveloping algebra. It is quite easy to see that as in the case of groups and Lie algebras, if A is finitely presented as a k-algebra then $\operatorname{Tor}_2^A(k,k)$ is finite dimensional, while the converse is not true. There are k-algebras that are not finitely presented, with $\operatorname{Tor}_2^A(k,k)$ finite dimensional, just as there are groups with a finitely generated Schur multiplier which are not finitely presented.

The second Tor functor, $\operatorname{Tor}_2^A(k,k)$, has been studied extensively. Frohlich [5] gave a "Hopf formula" for it, Knus [6] gave another proof of the formula, and of the five term exact sequence, which also shows the connection to the group and Lie algebras cases, and recently Rosset [8] studied it from a different angle, in analogy to the Baer invariants of groups.

As mentioned above, Frohlich [5] gave a "Hopf formula" for the Schur multiplier of A. If $0 \to I \to R \to A \to 0$ is a presentation of A, where R is a free k-algebra, and δ is the augmentation ideal of R, then

$$\operatorname{Tor}_2^A(k,k) = (I \cap \delta^2)/(\delta I + I\delta).$$

Can Lewin's result be strengthened to the statement that if A is infinite dimensional then the Schur multiplier of R/I^2 is not finite dimensional? In other words, do the results of [2] (for groups) and [1] (for Lie algebras) extend to associative algebras? In this generality the question remains unanswered. In addition, the same question can be asked about R/I^n for $n \geq 2$. We shall prove that under the assumption that A = R/I is an augmented domain, $\operatorname{Tor}_2^{R/I^n}(k,k)$ is in fact not finite dimensional.

Theorem 1.1: Let R be a finitely generated free associative algebra over a field k, and $I \subset \delta$ a non-zero two-sided ideal of R such that R/I is an infinite dimensional augmented integral domain over k. Then for n > 1, $\operatorname{Tor}_2^{R/I^n}(k,k)$

is not finite dimensional, and hence I^n is not finitely generated as a two-sided ideal.

Note that the requirement that R/I be an integral domain is similar to arguments used in both the group and Lie algebra cases. In Lie algebras, the enveloping algebra (over a field) is always a domain, a fact that is used in [1]. In the case of groups, the group ring of $F/\gamma_n F$ is a domain, a fact that is used in [2].

ACKNOWLEDGEMENT: I would like to thank the referee for pointing out an error in a previous draft of this paper, and for suggesting some improvements of the presentation. I am also grateful to Shmuel Rosset for the many fruitful discussions held on this and other related topics, and for his helpful suggestions and comments.

2. Proof

We shall need the following well known result.

THEOREM 2.1 (Cohn [4, Theorem II.4.3]): Let R be a free algebra over a field k and I a left (resp. right) ideal of R. Then I is a free left (resp. right) R-module.

In order to compute $\operatorname{Tor}_2^{R/I^n}(k,k)$ we can use Hopf's formula (note that for $n \geq 2$, $I^n \subset \delta^2$, thus $I^n \cap \delta^2 = I^n$)

$$\operatorname{Tor}_{2}^{R/I^{n}}(k,k) = I^{n}/(\delta I^{n} + I^{n}\delta) = k \otimes_{R} (I^{n}/I^{n+1}) \otimes_{R} k.$$

Any unadorned tensor is to be taken over k.

LEMMA 2.2: Let R be a free algebra over a field k, and let I, J, K, L be any four two-sided ideals of R. Then

$$I/KI \otimes_R J/JL \approx IJ/(KIJ + IJL).$$

Proof: By Theorem 2.1, I is a free right R module. Consider the mapping $I \otimes_R J \to I \otimes_R R \approx I$ which maps $i \otimes j \mapsto i \otimes j \mapsto ij$. Since I is flat, this is an injection. On the other hand, it is clear that the image of this mapping is IJ, so that $I \otimes_R J \approx IJ$. Now tensor this, over R, with R/K on the left, and R/L on the right. Thus

$$R/K \otimes_R I \otimes_R J \otimes_R R/L \approx R/K \otimes_R IJ \otimes_R R/L.$$

But the left hand side is isomorphic to $I/KI \otimes_R J/JL$ and the right hand side is isomorphic to IJ/(KIJ + IJL).

By an easy induction it follows from the previous lemma that $I^n/I^{n+1} \approx (I/I^2)^{\otimes_R^n}$, where this is to be taken to mean the n-fold tensor product over R. Therefore $\operatorname{Tor}_2^{R/I^n}(k,k) \approx k \otimes_R (I/I^2)^{\otimes_R^n} \otimes_R k$. However $k \otimes_R I/I^2 \approx I/\delta I$, and similarly $I/I^2 \otimes_R k \approx I/I\delta$. Note that the tensor products can be taken over A since I acts trivially on all these modules. Thus

$$\operatorname{Tor}_{2}^{R/I^{n}}(k,k) \approx I/\delta I \otimes_{A} (I/I^{2})^{\otimes_{A}^{n-2}} \otimes_{A} I/I\delta.$$

A theorem of Lewin is now very useful.

THEOREM 2.3 (Lewin [7]): Let R be a free algebra over a field k, with basis $X = \{x_1, \ldots, x_m\}$. Let U, V be two ideals of R and let T be the free R/V - R/U bi-module with basis $\{t_1, \ldots, t_m\}$, then there is a bi-module monomorphism

$$d: U \cap V/VU \to T$$
.

Note that T is simply the direct sum of m copies of $R/V \otimes (R/U)^{op}$. These injections are the equivalent of the Magnus embeddings that are used to prove the analogous results for groups and Lie algebras in [2] and [1]. In fact, the injections are a kind of 'Universal Derivation', as defined in [3]. One way to understand the injections is to consider a mapping $U \cap V \to R/V \otimes_R J \otimes_R (R/U)^{op}$ where J is the kernel of the multiplication mapping $R \otimes R \to R$. The injection of the theorem sends $x \mapsto 1 \otimes (x \otimes 1 - 1 \otimes x) \otimes 1$.

Another way to understand the injection, as shown in [7], is as follows. Define a derivation $d: R \to T$ by declaring d(1) = 0 and $d(x_i) = t_i$. This defines d on R since it is required to be a k-linear derivation. Thus if $w = x_{i_1} \cdots x_{i_l}$ is a monomial of R then

$$d(w) = \sum_{i=1}^{l} (x_{i_1} \cdots x_{i_{j-1}} + V) t_{i_j} (x_{i_{j+1}} \cdots x_{i_l} + U).$$

It is shown in [7] that d, restricted to $U \cap V$, is a bi-module morphism, and that the kernel of d is VU.

This theorem will be used three times, to give us three bi-module injections. In the first case take U = I and $V = \delta(R)$. The result is an injection $d_1 : I/\delta I \to T$ where T is the direct sum of m copies of $R/\delta \otimes A^{op} = A^{op}$, thus $T = (A^{op})^m$, a free right A module.

In the second case take $U = \delta$ and V = I and the result is an injection $d_2: I/I\delta \to T$, where $T = A^m$, a free left A module. A third case to consider is where U = V = I. In this case $T = (A \otimes A^{op})^m$, a free A bi-module, so the injection is $d_3: I/I^2 \to (A \otimes A^{op})^m$.

The important fact is that in all three cases, since d_1, d_2, d_3 are injections, and the original bi-modules are non-zero (since $I \subset \delta$ is non-zero), then the mappings are non-zero.

LEMMA 2.4: Let A be a domain over a field k, and F, resp. G, free right, resp. left, A modules, and let $f \in F$ and $g \in G$ be non-zero. Then the k-linear mapping $A \to F \otimes_A G$ given by $a \mapsto fa \otimes g$ is injective. In particular $f \otimes g \neq 0$.

Proof: Suppose $\{\alpha_i\}$ is a basis of F as a right module and $\{\beta_j\}$ a basis of G as a left module. Since f and g are non-zero, then $f = \sum_i \alpha_i x_i$ and $g = \sum_j y_j \beta_j$ where $x_i, y_j \in A$, and there are indices i_0, j_0 such that x_{i_0} and y_{j_0} are non-zero. Since F and G are free modules then we have a right A-linear mapping $\mu: F \to A$ and a left A-linear mapping $\nu: G \to A$, such that $\mu(\alpha_i) = \delta_{ii_0}$ and $\nu(\beta_j) = \delta_{jj_0}$. This defines a mapping $\mu \otimes \nu: F \otimes_A G \to A \otimes_A A \approx A$, where the last isomorphism is through multiplication. If $a \in A$ then $a \mapsto \sum_{i,j} \alpha_i x_i a \otimes y_j \beta_j$. If $a \mapsto 0$ then $\mu \otimes \nu(\sum_{i,j} \alpha_i x_i a \otimes y_j \beta_j) = x_{i_0} a y_{j_0} = 0$. But since A is a domain, this means a = 0.

LEMMA 2.5: Let R be a finitely generated free associative algebra over a field k, and $I \subset \delta$ a non-zero two-sided ideal of R such that A = R/I is an augmented domain. Then for any $l \geq 1$, there is a non-zero left A-linear mapping of $I^l/I^l\delta$ into a free left A module.

Proof: For l=1 this is obvious, just take $d_2:I/I\delta\to A^m$. We proceed by induction on l. Let G_l be a free left A module, and $\phi_l:I^l/I^l\delta\to G_l$ a non-zero left A-linear mapping. We also have $d_3:I/I^2\to (A\otimes A^{op})^m$, which is a non-zero A bi-module mapping. This gives us a mapping $d_3\otimes\phi_l:I/I^2\otimes_AI^l/I^l\delta\to (A\otimes A^{op})^m\otimes_AG_l$. Set $G_{l+1}=(A\otimes A^{op})^m\otimes_AG_l$ and $\phi_{l+1}=d_3\otimes\phi_l$. By Lemma 2.4, ϕ_{l+1} is a non-zero mapping, and since d_3 is left A-linear, so is ϕ_{l+1} . Since $(A\otimes A^{op})^m$ is a free bi-module, and G_l is a free left module, then G_{l+1} is a free left module. However, by Lemma 2.2, $I/I^2\otimes_AI^l/I^l\delta=I/I^2\otimes_RI^l/I^l\delta\approx I^{l+1}/I^{l+1}\delta$, so ϕ_{l+1} is the required mapping.

THEOREM 2.6: Let R be a finitely generated free associative algebra over a field k, and $I \subset \delta$ a non-zero two-sided ideal of R such that A = R/I is an augmented domain. Then for $n \geq 2$ there is a k-linear injection of A into $\operatorname{Tor}_2^{R/I^n}(k,k)$. In particular, if A is infinite dimensional, then $\operatorname{Tor}_2^{R/I^n}(k,k)$ is also infinite dimensional.

Proof: Consider

$$\operatorname{Tor}_{2}^{R/I^{n}}(k,k) \approx I/\delta I \otimes_{A} (I/I^{2})^{\otimes_{A}^{n-2}} \otimes_{A} I/I\delta \approx I/\delta I \otimes_{A} I^{n-1}/I^{n-1}\delta.$$

Since $n-1 \geq 1$, by Lemma 2.5 there is a left A-linear non-zero mapping $\phi: I^{n-1}/I^{n-1}\delta \to G$ where G is a free left A module. In addition, $d_1: I/\delta I \to (A^{op})^m$ is a right A-linear non-zero mapping to a free right A module. Thus we can choose $x \in I/\delta I$, $y \in I^{n-1}/I^{n-1}\delta$ that do not map to zero. Consider the k-linear mapping, $\psi: A \to \operatorname{Tor}_2^{R/I^n}(k,k)$ defined by $\psi(a) = xa \otimes y$. Since by Lemma 2.4, $(d_1 \otimes \phi) \circ \psi$ is an injection, ψ must be an injection.

References

- [1] J. Abarbanel and S. Rosset, Some non-finitely presented Lie algebras, Journal of Pure and Applied Algebra, to appear.
- [2] G. Baumslag, R. Strebel and W. Thomson, On the multiplicator of $F/\gamma_c R$, Journal of Pure and Applied Algebra 16 (1980), 121–132.
- [3] G. Bergman and W. Dicks, On universal derivations, Journal of Algebra 36 (1975), 193-211.
- [4] P. M. Cohn, Free Rings and Their Relations, 2nd ed., London Mathematical Society Monographs, Vol. 19, Academic Press, New York, 1985.
- [5] A. Fröhlich, Baer invariants of algebras, Transactions of the American Mathematical Society 109 (1963), 221–244.
- [6] M. Knus, Homology and homomorphisms of rings, Journal of Algebra 9 (1968), 274-284.
- [7] J. Lewin, On some infinitely presented associative algebras, Journal of the Australian Mathematical Society 16 (1973), 290-293.
- [8] S. Rosset, Nilpotent extensions and some associated invariants, Journal of Algebra 179 (1996), 964–982.